Boards and Beyond: Genetics

A Companion Book to the Boards and Beyond Website

Jason Ryan, MD, MPH

Version Date: 11-29-2016
Table of Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic Principles</td>
<td>1</td>
</tr>
<tr>
<td>Gene Mapping</td>
<td>7</td>
</tr>
<tr>
<td>Meiosis</td>
<td>10</td>
</tr>
<tr>
<td>Hardy-Weinberg Law</td>
<td>14</td>
</tr>
<tr>
<td>Pedigrees</td>
<td>16</td>
</tr>
<tr>
<td>Imprinting</td>
<td>21</td>
</tr>
<tr>
<td>Down Syndrome</td>
<td>23</td>
</tr>
<tr>
<td>Trisomies</td>
<td>27</td>
</tr>
<tr>
<td>Muscular Dystrophy</td>
<td>30</td>
</tr>
<tr>
<td>Trinucleotide Repeat Disorders</td>
<td>34</td>
</tr>
<tr>
<td>Deletion Syndromes</td>
<td>38</td>
</tr>
<tr>
<td>Turner and Klinefelter Syndromes</td>
<td>41</td>
</tr>
</tbody>
</table>
Genetics
Terminology

- **Genome**
 - DNA contained in nucleus of cells
 - "Hereditary material"
 - Passed to successive generations of cells
- **Genes**
 - Portions of DNA/genome
 - Code for proteins that carry out specific functions

Genetic Principles

Chromosome
- Rod-shaped, cellular organelles
- Single, continuous DNA double helix strand
- Contains a collection of genes (DNA)
- 46 chromosomes arranged in 23 pairs
 - Chromosomes 1 through 22 plus X/Y (sex)
 - Two copies each chromosome 1 through 22 (homologous)
- Key point: Two copies of any gene of a chromosome

Cell Types

- Somatic cells (most body cells)
 - Diploid: two sets of chromosomes (23 pairs)
- Gametes (reproductive cells)
 - "Haploid": one set of chromosomes

Somatic Cell Replication

Mitosis

- S phase of cell cycle
 - Chromosomes replicate → two sister chromatids
- M phase (mitosis): Cell divides
- Daughter cells will contain copies of chromosomes

Meiosis

- Gametes (reproductive cells)
 - "Haploid": one set of chromosomes
 - Produced by meiosis of germ line cells
 - Male and female gametes merge in fertilization
 - New “diploid” organism formed
- Key point: one gene from mother, one from father
Genetics Terminology

- **Allele**
 - Alternative forms of gene
 - Many genes have several forms
 - Often represented by letter (A, a)

- **Genetic polymorphism**
 - Genes exist in multiple forms (alleles)
 - Locus (plural loci)
 - Location of allele on chromosome
 - DNA → gene → allele → locus → chromosome

- **Wild type gene/allele**
 - Common in most individuals
 - Example: A = wild type

- **Mutant gene/allele**
 - Different from wild type
 - Caused by a mutation
 - Example: a = mutant
 - Individual: AA, Aa, aa

- **Germ line mutations**
 - DNA of sperm/eggs
 - Transmitted to offspring
 - Found in every cell in body

- **Somatic mutations**
 - Acquired during lifespan of cell
 - Not transmitted to offspring

- **Dominant gene/allele**
 - Determines phenotype even in individuals with single copy
 - Often denoted with capital letters
 - Example: Gene has two alleles: A, a
 - Aa, AA all have A phenotype

- **Recessive gene/allele**
 - Requires two copies to produce phenotype
 - Often denoted with lower case letters
 - Example: aa = a phenotype; Aa and AA = A phenotype

- **Genotype**
 - Genetic makeup of a cell or individual
 - Often refers to names of two copies of a gene
 - Example: Gene A from father, Gene B from mother
 - Genotype: AB
 - Or two alleles of gene A (A and a): AA, Aa, aa

- **Phenotype**
 - Physical characteristics that result from genotype
 - Example: AB = blue eyes; BB = green eyes

- **Homozygous**
 - Two identical copies of a gene (i.e. AA)

- **Heterozygous**
 - Two different copies of a gene (i.e. Aa)
α-1 Antitrypsin Deficiency

- May cause early COPD and liver disease
- Mutations in AAT gene (produces α1 antitrypsin)
 - M = normal allele
 - S = moderately low levels protein
 - Z = severely reduced protein levels
- Combination of alleles determines protein levels
 - MM = normal
 - ZZ = severe deficiency
 - Other combinations = variable risk of disease

Codominance

- Both alleles contribute to phenotype
- Classic example: ABO Blood Groups
 - A gene = A antigen on blood cells
 - B gene = B antigen
 - O gene = No A or B antigen
- AB individuals
 - Express A and B antigens

Penetrance

- Proportion with allele that express phenotype
- Incomplete penetrance
 - Not all individuals with disease mutation develop disease
 - Commonly applied to autosomal dominant disorders
 - Not all patients with AD disease gene develop disease
- Example BRCA1 and BRCA2 gene mutations

BRCA1 and BRCA2

- Genetic mutations that lead to cancer
- Germline gene mutations
- Autosomal dominant
- Not all women with mutations develop cancer
- Implications:
 - Variable cancer risk reduction from prophylactic surgery

Expressivity

- Variations in phenotype of gene
- Different from penetrance
- Classic case: Neurofibromatosis type (NF1)
 - Neurocutaneous disorder
 - Brain tumors, skin findings
 - Autosomal dominant disorder
 - 100% penetrance (all individuals have disease)
 - Variable disease severity (tumors, skin findings)

Pleiotropy

- One gene = multiple phenotypic effects and traits
- Example: single gene mutation affects skin, brain, eyes
- Clinical examples:
 - Phenylketonuria (PKU): skin, body odor, mental disability
 - Marfan syndrome: Limbs, eyes, blood vessels
 - Cystic fibrosis: Lungs, pancreas
 - Osteogenesis imperfecta: Bones, eyes, hearing
Two-Hit Origin of Cancer

• Mutations in **tumor suppressor genes**
 • Genes with many roles
 • Gatekeepers that regulate cell cycle progression
 • DNA repair genes
 • Heterozygous mutation = no disease
• Mutation of both alleles → cancer
• Cancer requires "two hits"
 • "Loss of heterozygosity"

Two-Hit Origin of Cancer

• **Classic example: Retinoblastoma**
 • Rare childhood eye malignancy
 • **Hereditary form (40% of cases)**
 • One gene mutated in all cells at birth (germline mutation)
 • Second somatic mutation "hit"
 • Cancer requires only one somatic mutation
 • Frequent, **multiple** tumors
 • Tumors at younger age

Two-Hit Origin of Cancer

• **Retinoblastoma: Sporadic form (non-familial)**
 • Requires two somatic ‘hits’
 • Two mutations in same cell = rare
 • Often a single tumor
 • Occurs at a later age

Two-Hit Origin of Cancer

• **HNPCC (Lynch syndrome)**
 • Hereditary nonpolyposis colorectal cancer
 • Inherited colorectal cancer syndrome
 • Germline mutation in DNA mismatch repair genes
 • Second allele is inactivated by mutation

Two-Hit Origin of Cancer

• Familial Adenomatous Polyposis (FAP)
 • Germline mutation of APC gene (tumor suppressor gene)
 • Always (100%) progresses to colon cancer
 • Treatment: Colon removal (colectomy)

Two-Hit Origin of Cancer

• Li-Fraumeni syndrome
 • Syndrome of multiple malignancies at an early age
 • Sarcoma, Breast, Leukemia, Adrenal Gland (SBLA) cancer syndrome
 • Germline mutation in tumor suppressor gene TP53
 • Codes for tumor protein p53
 • Delays cell cycle progression to allow for DNA repair
Mosaicism

- Gene differences in cells of same individual
- Mutations in cells \(\rightarrow\) genetic changes
- Individual will be a mixture of cells

Mosaicism

- **Germline mosaicism**
 - Can be passed to offspring
 - Pure germline mosaicism difficult to detect
 - Not present in blood/tissue samples used for analysis
 - Offspring disease may appear sporadic
 - Can present as recurrent "sporadic" disease in offspring

Mosaicism

- **Somatic mosaicism**
 - Gene differences in tissues/organs
 - 45X/46XX mosaic Turner syndrome (milder form)
 - Rare forms of Down syndrome

McCune-Albright Syndrome

- Rare disorder
- Affects many endocrine organs
- **Precocious puberty**
 - Menstruation may occur 2 years old
 - Fibrous growth in bones
 - Fractures, deformity
 - **Skin pigmentation**
 - Café-au-lait spots
 - Irregular borders ("Coast of Maine")

McCune-Albright Syndrome

- "Postzygotic" mutation
 - Occurs after fertilization
 - Only some tissues/organs affected (mosaicism)
 - Clinical phenotype varies depending on which tissues affected
 - Germline occurrences of mutation are lethal
 - Entire body affected
 - Cells with mutation survive only if mixed with normal cells

McCune-Albright Syndrome

- Caused by sporadic mutation in development
 - Not inherited
 - Somatic mutation of **GNAS gene**
 - Codes for alpha subunit of G3 protein
 - Activates adenylyl cyclase
 - Continued stimulation of cAMP signalling
Allelic heterogeneity

- Allele = Alternative form of gene
 - Allele 1 = mutation X
 - Allele 2 = mutation Y
 - Both X and Y cause same disease
 - X and Y found at same chromosomal locus (position)
- Many alleles possess multiple mutant forms
- One disease = multiple genes = single location

Locus heterogeneity

- Mutations in different loci cause same phenotype
- Example: Retinitis Pigmentosa
 - Causes visual impairment
 - Autosomal dominant, recessive, and X-linked forms
 - Mutations at 43 different loci can lead to disease
- One disease = multiple genes = multiple locations

Genetic Heterogeneity

- Same phenotype from different genes/mutations
 - Different mutations of same allele → same disease
 - Different gene (loci) mutations → same disease
 - Multiple gene mutations often cause same disease
 - Many diseases have multiple genotypes
Genetic Recombination

- During meiosis chromosomes exchange segments
- Child inherits "patchwork" of parental chromosomes
- Never exact copy of parental chromosomes

Genetic Mapping

Jason Ryan, MD, MPH

Independent Assortment

- Suppose father has two alleles of F and M genes
 - F and f
 - M and m
- F and M found on different chromosomes
- Independent assortment
 - Occurs if F and M genes can independently recombine
 - 25% chance of each combination in gamete

Independent Assortment

- What if genes on same chromosome?
 - If very far apart, crossover may occur in meiosis
 - Result: Same combinations as separate chromosomes
Independent Assortment

• What if genes on same chromosome?
• If very far apart, crossover may occur in meiosis
• Result: Same combinations as separate chromosomes

Recombination

Any break here allows A and B to recombine

Any break here allows B and C to recombine

Two copies of parental chromosome

Recombination Frequency

• Frequency of recombined genes (Fm or fM)
• Denoted by Greek letter theta (θ)
• Ranges from zero to 0.5
• Key point: recombination frequency α distance
 • Close together: θ = 0
 • Far apart: θ = 0.5
 • Used for genetic mapping of genes

Genetic Mapping

Linkage Mapping

• Done by studying families
• Track frequency of genetic recombination
• Use frequency to determine relative gene location

<table>
<thead>
<tr>
<th>Combination</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-B</td>
<td>0.76</td>
</tr>
<tr>
<td>A-C</td>
<td>0.09</td>
</tr>
<tr>
<td>C-B</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Linkage

• Tendency of alleles to transmit together
 • More linkage = less independent assortment
 • Close together (θ = 0) = tightly linked
 • Far apart (θ = 0.5) = unlinked
Linkage Disequilibrium

- Used to study genes that are very close together
- Recombination very rare
- Family studies impractical
- Done by studying large populations

Linkage Equilibrium

- Gene A has two polymorphisms: A and a
 - A found in 50% of individuals
 - a in 50%
- Gene B has two polymorphisms: B and b
 - B found in 90% of individuals
 - b in 10%

\[
\begin{align*}
A &= 0.5 \\
a &= 0.5 \\
B &= 0.9 \\
b &= 0.1
\end{align*}
\]

Linkage Disequilibrium

- Population frequencies should be:
 - AB = (0.5) x (0.9) = 0.45
 - Ab = (0.5) x (0.1) = 0.05
 - aB = (0.5) x (0.9) = 0.45
 - Ab = (0.5) x (0.1) = 0.05
 - This is linkage equilibrium

Linkage Disequilibrium

- Population frequencies higher/lower than expected
 - AB = 0.75 (higher than expected 0.45)
 - This haplotype (AB) is in linkage disequilibrium

Linkage Disequilibrium

- Consider new gene mutation A
 - Initially close to gene B
 - AB transmitted together in a population
 - Eventually A and B genes may recombine
 - Depends on distance apart and size of population
 - LD greatest when gene first enters population (i.e., mutation)
 - Fades with successive generations (i.e., population size)
 - Fades if distance between genes is greater

Linkage Disequilibrium

- Linkage disequilibrium affected by:
 - Genetic distance
 - Time alleles have been present in population
 - Different populations: different degrees of linkage disequilibrium
Meiosis

Diploid cells give rise to haploid cells (gametes)

Unique to "germ cells"
- Spermatocytes
- Oocytes

Two steps: Meiosis I and Meiosis II

Meiosis I
- Diploid \rightarrow Haploid ("reductive division")
- Separates homologous chromosomes

Meiosis II
- Chromatids separate
- Four daughter cells

Oogenesis
- "Primary oocytes" form in utero
 - Diploid cells
 - Just beginning meiosis I
 - Arrested in prophase of meiosis I until puberty
- At puberty
 - A few primary oocytes complete meiosis I each cycle
 - Some form polar bodies \rightarrow degenerate
 - Some form secondary oocytes (haploid)
 - Meiosis II begins \rightarrow arrests in metaphase
 - Fertilization \rightarrow completion of meiosis II
Aneuploidy
- Abnormal chromosome number
 - Extra or missing chromosome
 - Disomy = two copies of a chromosome (normal)
 - Monosomy = one copy
 - Trisomy = three copies

Meiotic Nondisjunction
- Failure of chromosome pairs to separate
- Most common mechanism of aneuploidy
- Can occur in meiosis I or II

Meiosis I Nondisjunction
- Blue = Paternal
- Red = Maternal
- Homologous Chromosomes Fail to Separate
- Diploid Mixture Genes
- Meiosis I NDJ
- Normal

Meiosis II Nondisjunction
- Blue = Paternal
- Red = Maternal
- Sister Chromatids Fail to Separate
- Diploid No mixture genes
- No genes
- Meiosis II NDJ
- Normal

Monosomy
- Fertilization of 1n (normal) and 0n gamete
- Usually not viable
- Turner syndrome (45,X)
 - Only one sex chromosome
Trisomy

- Fertilization of 1n (normal) and 2n gametes
- Not compatible with life for most chromosomes
- Exceptions:
 - Trisomy 21 = Down syndrome (95% cases due to NDJ)
 - Trisomy 18 = Edward syndrome
 - Trisomy 13 = Patau syndrome

- Maternal meiosis I NDJ errors are a common cause
 - Meiosis I protracted in females
 - Begins prenatally, completed at ovulation years later
 - Advanced maternal age \Rightarrow↑ risk trisomy

Trisomy

- Cause of NDJ suggested by trisomy genotype
 - Father = 21A and 21B; Mother = 21C and 21D
 - Trisomy 21 ACD = Meiosis I nondisjunction in mother
 - Trisomy 21 ACC = Meiosis II nondisjunction in mother

Uniparental Disomy

- Child is euploid
 - Normal number of chromosomes
 - No aneuploidy
 - Usually normal phenotype
- Can lead to phenotype of recessive disease
 - Father = Aa (recessive gene for disease)
 - Child = aa (two copies of a from father)

- Child has two copies of one parent's chromosomes
 - No copies of other parent's chromosomes
 - Father = 21A and 21B; Mother = 21C and 21D
 - Child AA (isodisomy) = Meiosis I error (father)
 - Child CD (heterodisomy) = Meiosis I error (mother)

Robertsonian Translocation

- Fusion of long arms of two chromosomes
- Occurs in acrocentric chromosomes
 - Chromosomes with centromere near end (13, 14, 21, 22)
Robertsonian Translocation

- Carrier has only 45 chromosomes (one translocated)
- Loss of short arms → normal phenotype (no disease)
- 13-14 and 14-21 are most common
- Main clinical consequences
 - Many monosomy and trisomy gametes
 - Frequent spontaneous abortions
 - Carrier may have child with Down syndrome (trisomy 21)

Karyotype

- Can be done in couples with recurrent fetal losses
- Used to diagnose chromosomal imbalances
Hardy-Weinberg Law

Example
• Given gene has two possible alleles: A and a
• Allele A found in 40% of genes (p=0.40)
• Allele a found in 60% of genes (q=0.60)
• What is frequency of genotypes AA, Aa, and aa?

\[p + q = 1 \]

\[p^2 + 2pq + q^2 = 1 \]

\[p = 0.4, q = 0.6 \]

\[p^2 = 0.16 \]

\[2pq = 0.48 \]

\[q^2 = 0.36 \]

Hardy-Weinberg Law

Assumptions
• Large population
• Completely random mating
• No mutations
• No migration in/out of population
• No natural selection
Hardy-Weinberg Law

- If assumptions met, allele frequencies do not change from one generation to the next
- "Hardy-Weinberg equilibrium"

Hardy-Weinberg Law

- Very useful in autosomal recessive diseases
- Disease (aa) frequency often known
 - Example: 1/5000 individuals have disease
- Carrier (Aa) frequency often unknown

Hardy-Weinberg Law

- Disease X caused by recessive gene
- Disease X occurs in 1/4500 children
 - \(q^2 = 1/4500 = 0.0002 \)
 - \(q = \sqrt{0.0002} = 0.015 \)
 - \(p + q = 1 \)
 - \(p = 1 - 0.015 = 0.985 \)
 - Carrier frequency = \(2pq \)
 - \(2 \times 0.985 \times 0.015 = 0.029 = 3\% \)
 - Very rare diseases \(p \) close to 1.0
 - Carrier frequency \(\approx 2q \)

Hardy-Weinberg Law

- Special case: X-linked disease
- Two male genotypes (X\(d\)Y or XY)
- Three female genotypes (XX or X\(d\)X or X\(d\)X\(d\))

Hardy-Weinberg Law

X-linked Disease

- Consider males and females separately
 - Among males
 - \(p + q = 1 \) (all males are either X\(d\) or X)
 - \(p = \) frequency healthy males (XY)
 - \(q = \) frequency diseased males (X\(d\)Y)
 - Males/females have same allele frequencies
 - \(p \) males = \(p \) females
 - \(q \) males = \(q \) females
 - Among females
 - \(p^2 = \) frequency healthy females (XX)
 - \(2pq = \) frequency carrier females (X\(d\)X)
 - \(q^2 = \) frequency diseased females (X\(d\)X\(d\))
Pedigrees

Jason Ryan, MD, MPH

Pedigree

- Visual representation of a family
- Often used to study single gene disorders
 - Gene passed down through generations
 - Some members have disease
 - Some members are carriers
- Several typical patterns
 - Autosomal recessive genes
 - Autosomal dominant genes
 - X-linked genes

Pedigree Symbols

- Unaffected Male
- Affected Male
- Unaffected Female
- Affected Female
- Marriage
- Children

Autosomal Recessive

- Two alleles for a gene (i.e. A = normal; a = disease)
- Only homozygotes (aa) have disease

Autosomal Recessive

- If both parents are carriers (Aa)
 - Child can have disease (aa)
 - Only 1 in 4 chance of child with disease
 - 2 of 4 children will be carriers (Aa)
 - 1 of 4 children NOT carriers (AA)

Autosomal Recessive

- If both parents are carriers (Aa)
 - 50% chance mother gives a to child
 - 50% chance father gives a to child
 - \((0.5 \times 0.5) = 0.25\) chance child has disease
Autosomal Recessive

Mother (1/50)

<table>
<thead>
<tr>
<th>Father (1/100)</th>
<th>A</th>
<th>Aa</th>
<th>aa</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>AA</td>
<td>Aa</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>Aa</td>
<td></td>
<td>aa</td>
</tr>
</tbody>
</table>

- Mother 1/50 chance of being carrier
- Father 1/100 chance of being carrier
- Chance BOTH carriers = (1/100) * (1/50) = 1/5,000
- Chance child affected = (1/4) * (1/5000) = 1/20,000

Autosomal Recessive

- Males and females affected equally
- Few family members with disease
- Often many generations without disease
- Increased risk: **Consanguinity**
 - Parents are related
 - Share common ancestors

Autosomal Recessive

- Cystic fibrosis
- Sickle cell anemia
- Hemochromatosis
- Wilson’s disease
- Many others

Autosomal Dominant

- Two alleles for a gene (i.e. A = disease; a = no disease)
- Heterozygotes (Aa) and homozygotes (AA) have disease

Autosomal Dominant

- Males and females affected equally
- One affected parent → 50% offspring with disease
- Male-to-male transmission occurs

- Familial hypercholesterolemia
- Huntington’s disease
- Marfan syndrome
- Hereditary spherocytosis
- Achondroplasia
- Many others
Incomplete Dominance
Semidominant

- Heterozygote phenotype different from homozygote
 - Heterozygotes: less severe form of disease
 - Homozygotes: more severe

Classic example: Achondroplasia
- Autosomal dominant disorder of bone growth
- Heterozygotes (Dd): Dwarfism
- Homozygotes (dd): Fatal

Familial hypercholesterolemia
- Heterozygotes: total cholesterol 350–550mg/dL
- Homozygotes: 650–1000mg/dL

X-linked Disorders

- Disease gene on X chromosome (Xα)
- Always affects males (X,Y)
- Females (X,X) variable
 - X-linked recessive = females usually NOT affected
 - X-linked dominant = females can be affected

X-linked Recessive

- All males with disease gene have disease
- Most females with disease gene are carriers

X-linked Recessive

- No male-to-male transmission
 - All fathers pass Y chromosome to sons
 - Sons of heterozygous mothers: 50% affected
 - Classic examples: Hemophilia A and B

X-linked Recessive

- Females very rarely develop disease
 - Usually only occurs if homozygous for gene
 - Father must have disease and mother must be carrier
 - Females can develop disease with skewed lyonization
Lyonization

- Results in inactivated X chromosome in females
 - One X chromosome undergoes “Lyonization”
 - Condensed into heterochromatin with methylated DNA
 - Creates a Barr body in female cells

- Random process
- Different inactive X chromosomes in different cells
- Occurs early in development (embryo < 100 cells)
- Results in X mosaicism in females
- May cause symptoms in females X-recessive disorders
- “Skewed lyonization”

X-linked Dominant

- Occur in both sexes
- Every daughter of affected male has disease
 - All daughters get an X chromosome from father
 - Affected father MUST give disease X chromosome to daughter

- Can mimic autosomal dominant pattern
- Key difference: No male-to-male transmission
 - Fathers always pass Y chromosome to sons

- More severe among males (absence of normal X)
- Classic example: Fragile X syndrome
 - 2nd most common genetic cause intellectual disability (Down)
 - More severe in males
 - Often features of autism
 - Long, narrow face, large ears and jaw

Mitochondrial Genes

- Each mitochondria contains DNA (mtDNA)
 - Code for mitochondrial proteins
- Organs most affected by gene mutations:
 - CNS
 - Skeletal muscle
 - Rely heavily on aerobic metabolism
Mitochondrial Genes

- Heteroplasmy
 - Multiple copies of mtDNA in each mitochondrion
 - Multiple mitochondria in each cell
 - All normal or abnormal: Homoplasmy
 - Mixture: Heteroplasmy
- Mutant gene expression highly variable
 - Depends on amount of normal versus abnormal genes
 - Also number of mutant mitochondria in each cell/tissue

Mitochondrial Disorders

- Mitochondrial DNA inherited from mother
 - Sperm mitochondria eliminated from embryos
- Homoplasmic mothers → all children have mutation
- Heteroplasmic mothers → variable

Mitochondrial Myopathies

- Rare disorders
- Weakness (myopathy), confusion, lactic acidosis
- Wide range of clinical disease expression
- Classic hallmark: Red, ragged fibers
 - Seen on muscle biopsy with special stains
 - Caused by compensatory proliferation of mitochondria
 - Accumulation of mitochondria in muscle fibers visualized
 - Mitochondria appear bright red against blue background

Polygenic Inheritance

- Many traits/diseases depend on multiple genes
 - Height
 - Heart disease
 - Cancer
 - “Run in families”
 - Do not follow a classic Mendelian pattern

Multifactorial Inheritance

- Genes, lifestyle, environment → disease
- Seen in many diseases
 - Diabetes
 - Coronary artery disease
 - Hypertension
Imprinting

Jason Ryan, MD, MPH

Imprinting

- Occurs during gametogenesis (before fertilization)
 - Genes “marked” as being parental/maternal in origin
 - Often by methylation of cytosine in DNA

Cytosine

Methylcytosine

Imprinting Syndromes

- Prader-Willi and Angelman syndromes
 - Both involve abnormal chromosome 15q11-q13
 - “PWS/AS region”
 - Paternal copy abnormal: Prader-Willi
 - Maternal copy abnormal: Angelman
 - Differences due to imprinting

Imprinting Syndromes

- PWS genes
 - Normally expressed on paternal chromosome 15
 - NOT normally expressed on maternal copy
- UBE3A
 - Normally expressed on maternal chromosome 15
 - NOT normally expressed on paternal copy
Prader-Willi Syndrome

PWS

- Loss of function of **paternal copy** of PWS gene

- ~75% cases from deletion of paternal gene
 - Most cases due to sporadic mutation
- ~25% from maternal **uniparental disomy**
 - Two copies of maternal gene inherited
 - No copies of paternal gene

Prader-Willi Syndrome

PWS

- Most common "syndromic" cause of **obesity**
 - Hypotonia
 - Newborn feeding problems
 - Poor suck reflex
 - Delayed milestones
- Hyperphagia and obesity
 - Begins in early childhood
- Intellectual disability (mild)
 - Contrast with AS (severe)
- Hypogonadism
 - Delayed puberty

Angelman Syndrome

- Abnormal **maternal** chromosome 15q11-q13
 - Lack of expression of **UBE3A**

- Majority of cases caused by deletions
 - Only about 3-5% from uniparental disomy
 - Paternal disomy much less common than maternal
 - Non-disjunction less common

Angelman Syndrome

- Frequent laughter/smiling
 - "Happy puppet"
- Seizures (80% patients)
- Ataxia
- Severe intellectual disability
Down Syndrome

Jason Ryan, MD, MPH

Trisomy Disorders

- Down syndrome (21)
- Edward syndrome (18)
- Patau syndrome (13)

Down Syndrome

- Most common liveborn chromosome abnormality
- Most common form intellectual disability
- Other key features
 - "Dysmorphic" features (face, hands, stature)
 - Congenital malformations (heart, GI tract)
 - Early Alzheimer’s disease
 - Increased risk of malignancy
- Clinical phenotype variable
 - Range of features from mild to severe

Dysmorphic Features

- "Flat" facial profile
- Flat nasal bridge
- Low-set small ears
- Short neck
- Brachycephaly
 - Posterior skull is flat (not rounded)

Dysmorphic Features

- Prominent epicanthal folds
 - Skin of the upper eyelid
 - Covers the inner corner of the eye
- Upplanting palpebral fissures
 - Separation upper/lower eyelids
 - Outer corners higher than inner

Brushfield Spots

- White spots on iris
Dysmorphic Features

- Short, broad hands
- Transverse palmar crease
- "Sandal gap"
 - Space between 1st/2nd toes

Other Physical Features

- Hypotonia
 - Often identified at birth
- Short stature

Intellectual Disability

- Almost all patients affected
- Wide range of cognitive impairment
- Normal IQ ~ 100
- Mild Down syndrome: 50 to 70
- Severe Down syndrome: 20 to 35

Congenital Heart Disease

- Occurs in 50% of patients
- Most commonly endocardial cushion defects
 - Involves atrioventricular septum
 - Forms base of interatrial septum
 - Forms upper interventricular septum

Common defects:
- Primum ASD
- VSD (holosystolic murmur)

Gastrointestinal Anomalies

- Occur in 5% of patients
- Duodenal atresia or stenosis (most common)
- Hirschsprung disease
 - More common than in general population
Alzheimer's Disease
- Occurs early
- Average age of onset in 50s
- Amyloid Precursor Protein (APP)
 - Found on chromosome 21
 - Breakdown forms beta amyloid
 - Amyloid plaques form in AD

Malignancy
- Lifetime risk of leukemia about 1 to 1.5%
- Often occurs in childhood
- Acute lymphoblastic leukemia
 - Risk 10 to 20 times higher in DS
- Acute myeloid leukemia
 - M7 subtype
 - Megakaryoblastic leukemia

Down Syndrome
Genetics
- Meiotic nondisjunction
 - Two chromosomes from one parent; one from other
 - Most common cause of Down syndrome (95% cases)
 - Usually meiosis I (90% of cases)
- Extra chromosome from mother in 90% cases
 - Increased risk with advanced maternal age

Down Syndrome
Genetics
- Rarely caused by Robertsonian translocation
 - 2-3% of cases
 - Chromosome 21 fused with another chromosome
 - Most commonly chromosome 14 or 10
 - Two copies 21 passed to fetus from one parent
 - No increased risk with advanced maternal age
 - High recurrence risk within families

Down Syndrome
Genetics
- Rarely (<2% cases) caused by mitotic error
 - Error in mitosis of somatic cells after fertilization
 - May result in somatic mosaicism
 - Some cells trisomy 21, others normal
 - Can lead to milder features of DS
 - No association with advanced maternal age

Down Syndrome
Prenatal Screening
- Definitive test: Fetal karyotype
 - Chorionic villus sampling (placental tissue)
 - Amniocentesis (amniotic fluid)
Down Syndrome

First Trimester Screening

- Maternal blood testing
- Pregnancy-associated plasma protein-A (PAPP-A)
 - Glycoprotein produced by placenta
 - Lower levels in pregnancies with fetal Down syndrome
- Free or total β-hCG
 - Hormone produced by placenta
 - Levels are higher in pregnancies with fetal Down syndrome

Prenatal Screening

- Noninvasive tests
 - Ultrasound
 - Maternal serum testing

Down Syndrome

Second Trimester Screening

- α-fetoprotein and estriol (uE3)
 - Reduced in pregnancies with fetal Down syndrome
 - AFP: protein produced by yolk sac and liver
 - NOTE: Increased AFP associated with neural tube defects
- β-hCG and inhibin A
 - Increased in pregnancies with fetal Down syndrome
 - Inhibin A synthesized by placenta
 - "Quadscreen"
Trisomy Disorders

- Down syndrome (21)
- Edward syndrome (18)
- Patau syndrome (13)

Trisomy Disorders

- All associated with advanced maternal age
- All most commonly due to meiotic nondisjunction
- Common features
 - Intellectual disability
 - Physical deformities
 - Congenital heart defects

Edward Syndrome

Trisomy 18

- 2nd most common trisomy in live births
- Severe intellectual disability
- Often female (3:1 female to male ratio)

Edward Syndrome

Trisomy 18

- Poor intrauterine growth – low birth weight
- Abnormally shaped head
 - Very small
 - Prominent back of skull (occiput)
- Low set ears
- Small jaw and mouth
- Clenched fists with overlapping fingers
- “Rockerbottom” (curved) feet

Edward Syndrome

Trisomy 18

- Congenital heart disease (50% babies)
 - Ventricular septal defects
 - Patent ductus arteriosus
- Gastrointestinal defects (75% cases)
 - Meckel’s diverticulum
 - Malrotation
 - Omphalocele
Edward Syndrome
Trisomy 18
- Many cases die in utero
- 50% affected infants die in first two weeks
- Only 5 to 10% survive first year

Edward Syndrome
Screening
- Physical features often diagnosed by fetal ultrasound
- Limb deformities, congenital heart defects

<table>
<thead>
<tr>
<th>First Trimester</th>
<th>Down</th>
<th>Edward</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAPP-A</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>B-hCG</td>
<td>↑</td>
<td>↓</td>
</tr>
</tbody>
</table>

Edward Syndrome
Screening

<table>
<thead>
<tr>
<th>Second Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Down</td>
</tr>
<tr>
<td>AFP</td>
</tr>
<tr>
<td>Evenol</td>
</tr>
<tr>
<td>B-hCG</td>
</tr>
<tr>
<td>Inhibin-A</td>
</tr>
</tbody>
</table>

Patau Syndrome
Trisomy 13
- Rare
- Severe intellectual disability
- Severe structural malformations
- Detected by fetal ultrasound >90% of cases

Patau Syndrome
Trisomy 13
- Eye abnormalities
 - Microphthalmia: abnormally small eyes
 - Anophthalmia: absence of one or both eyes
- Cleft lip and palate
- Post-axial polydactyly
 - Polydactyly: extra finger or toe
 - Extra digit away from midline (ulnar)

Patau Syndrome
Trisomy 13
- Holoprosencephaly
 - CNS malformation
 - Failure of cleavage of prosencephalon
 - Left/right hemispheres fail to separate
 - May result in "alojar" brain
Patau Syndrome
Trisomy 13

- **Congenital heart disease** (80% cases)
 - Ventricular septal defect (VSD)
 - Patent ductus arteriosus (PDA)
 - Atrial septal defect (ASD)

- Most cases die in utero
- Median survival 7 days
- 91% die within 1st year of life

Patau Syndrome
Trisomy 13

- Usually diagnosed by fetal ultrasound

First Trimester

<table>
<thead>
<tr>
<th></th>
<th>Down</th>
<th>Edward</th>
<th>Patau</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAPP-A</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>B-hCG</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
</tr>
</tbody>
</table>
Muscular Dystrophies

• Group of genetic disorders
• More than 30 types
• All result from defects in genes for muscle function
• Main symptom: **Progressive muscle weakness**

Muscular Dystrophy

Jason Ryan, MD, MPH

Muscular Dystrophies

• Duchenne: Most common
• Becker: Milder variant of Duchenne
• Myotonic: Trinucleotide repeat disorder

Duchenne and Becker

• Both X-linked
 • "X-linked muscular dystrophies"
 • Both involve DMD gene and dystrophin protein
 • Myotonic dystrophy
 • Different gene
 • Different protein
 • Not X-linked (autosomal dominant)

DMD

Duchenne Muscular Dystrophy

• X-linked recessive disorder
 • All male carriers affected
 • 1/3 cases new mutations in fertilized egg (no parental carrier)
 • 2/3 inherited from carrier mothers

DMD

Duchenne Muscular Dystrophy

• Abnormal DMD gene
 • Massive gene (2300kb)
 • 1.5% of the X chromosome
 • Among largest known genes
 • High mutation rate
 • Codes for dystrophin
Dystrophin

• Maintains muscle membranes
• Connects intracellular actin to transmembrane proteins
• Binds α- and β-dystroglycan in membrane
• Connected to the extracellular matrix (laminin)

Dystrophin Gene Mutations

• Most mutations are deletions
• Duchenne: Frameshift mutation
 • Deletion disrupts reading frame
 • Early stop codon
 • Truncated or absent dystrophin protein
• Becker: Non-frameshift mutation
 • Some functioning protein
 • Less severe disease

DMD

Duchenne Muscular Dystrophy

• Loss of dystrophin \(\rightarrow \) myonecrosis
• Creatine kinase elevation
 • Common in early stages
 • Released from diseased muscle
• Other muscle enzymes also elevated
 • Aldolase
 • Aspartate transaminase (AST)
 • Alanine transaminase (ALT)

DMD

Duchenne Muscular Dystrophy

• Affected boys normal first few years
• Weakness develops age 3-5
• Wheelchair usually by age 12
• Death usually by age 20
 • Usually due to respiratory failure
 • Sometimes heart failure
DMD

Duchenne Muscular Dystrophy

- Proximal muscles affected before distal limb muscles
- Lower limbs affected before upper extremities
- **Affected children:**
 - Difficulty running, jumping, climbing stairs
 - Use hands to push themselves up from chair (Gower’s sign)
 - Waddling gait
- Muscle replaced with fat/connective tissue
 - Calf enlargement
 - "Pseudohypertrophy"

DMD

Duchenne Muscular Dystrophy

- **Cardiomyopathy**
 - Depressed LVEF
 - Systolic heart failure
 - Myocardial fibrosis
- **Conduction abnormalities**
 - AV block
 - Arrhythmias

DMD

Duchenne Muscular Dystrophy

- **Muscle biopsy** (rarely done in modern era)
 - Degeneration of fibers
 - Replacement of muscle by fat and connective tissue

DMD

Duchenne Muscular Dystrophy

- **Western blot**
 - Absence of dystrophin in Duchenne
 - Altered dystrophin in Becker

BMD

Becker Muscular Dystrophy

- Also X-linked recessive disorder
- 90% cases inherited from carrier mothers
 - Less severe disease
 - More males pass gene on to female offspring

DMD

Duchenne Muscular Dystrophy

- **Diagnosis:** Genetic testing
 - Usually with variations of polymerase chain reaction
 - Identify most common DMD gene abnormalities
BMD
Becker Muscular Dystrophy

- Milder form of muscular dystrophy
- Late age of onset
- Some patients remain ambulatory
- Often survive into 30s
Trinucleotide Repeat Disorders

- Occur in genes with repeat trinucleotide units
 - Example: CAGCAGCAGCAG
- Most disorders involve nervous system
- Key examples
 - Fragile X syndrome
 - Friedreich’s ataxia
 - Huntington’s disease
 - Myotonic dystrophy

Trinucleotide Repeat Disorders

- Wild-type (normal) allele
 - Found in most individuals
 - Polymorphic
 - Variable number of repeats from person to person
 - Overall number of repeats relatively low
- Disease (abnormal) allele
 - Found in affected individuals
 - Increased (“expanded”) number of repeats
 - Beyond the normal range
 - Likely due to slipped DNA mispairing

Trinucleotide Repeat Disorders

- Disease gene: “Unstable repeat expansions”
 - Number of repeats may increase in offspring
 - One generation to next: more repeats
 - Key point: genetic abnormality changes over time
- Anticipation
 - Disease severity worse in subsequent generations
 - Earlier onset in subsequent generations
 - Associated with more repeats in abnormal gene

Fragile X Syndrome

- X-linked dominant disorder
- Abnormal FMR1 gene
 - Fragile X mental retardation 1 gene
 - Found on long arm of X chromosome
- Most commonly an increase in CGG repeats
 - Normal <55 repeats
 - Full mutation: >200 repeats
 - Leads to DNA methylation of FMR1 gene
 - Gene silenced by methylation

Fragile X Syndrome

- More severe among males (absence of normal X)
- 2nd most common genetic cause intellectual disability
 - Down syndrome most common
- Anxiety, ADHD
- Often has features of autism
- Long, narrow face, large ears and jaw
- Macroorchidism (large testicles)
 - Classic feature
Friedreich’s Ataxia

• Hereditary ataxia disorder
• Autosomal recessive
• Mutation of *frataxin* gene on chromosome 9
 • Needed for normal mitochondrial function
 • Increased number GAA repeats
 • Leads to decreased frataxin levels
• Frataxin: mitochondrial protein
 • High levels in brain, heart, and pancreas
 • Abnormal frataxin → mitochondrial dysfunction

Friedreich’s Ataxia

• Begins in adolescence with progressive symptoms
• Cerebellar and spinal cord degeneration
 • Loss of balance
 • Weakness
• Associated with hypertrophic cardiomyopathy
• Physical deformities:
 • Kyphoscoliosis
 • Foot abnormalities

Huntington’s Disease

• Movement (CNS) disorder
• Autosomal dominant
• Mutation in the HTT gene
 • Codes for protein huntingtin
• Mutation → Increased CAG repeat
 • CAG codes for glutamine
 • “Polyglutamine disorders:” Huntington’s, other rare CNS diseases
• Normal 10-35 repeats
• Huntington’s 36 to 120 repeats

Huntington’s Disease

• Degeneration in basal ganglia (striatum)
• Leads to chorea, dementia
• Onset of symptoms 30s-40s
• Death after 10-20 years

Myotonic Dystrophy

• Muscle disorder
• Autosomal dominant

Myotonic Dystrophy

• Type 1 (most common)
 • Abnormal *DMPK* gene (chromosome 19)
 • Dystrophia myotonica protein kinase
 • CUG expansion
 • Codes for myotonic dystrophy protein kinase
 • Abnormal gene transcribed to mRNA but not translated
• Type 2: abnormal CNBP gene
 • Rare type
 • Usually less severe than type 1
 • CCTG (tetranucleotide) repeat (not a trinucleotide disorder)
Myotonic Dystrophy

- Most common MD that **begins in adulthood**
- Often starts in 20s or 30s
- Progressive muscle wasting and weakness
- Prolonged muscle contractions (myotonia)
 - Unable to relax muscles after use
 - Cannot release grip
 - Locking of jaw

- Facial muscles often affected
- Characteristic facial appearance
- Caused by muscle weakness and wasting
- Long and narrow face
- Hollowed cheeks

Myotonic Dystrophy

- **Multisystem disorder**
- Many non-muscle features
- Hypogonadism
- Cataracts
- Cardiac arrhythmia
- Frontal balding

- **Endocrine Involvement**
 - Primary **hypogonadism**
 - Low testosterone
 - Elevated FSH
 - Oligospermia
 - Infertility
 - Testicular atrophy
 - Insulin resistance

Myotonic Dystrophy

- **Cardiac Involvement**
 - Arrhythmias and conduction disease common
 - First degree atrioventricular block (20 to 30%)
 - Bundle branch block (10 to 15%)
 - Atrial flutter and atrial fibrillation

Myotonic Dystrophy

- **Cataracts**
 - High prevalence
 - Occur at younger age
 - Regular slit-lamp exams for screening
Myotonic Dystrophy

Lung Involvement
- Respiratory complications common
- Weakness/myotonia of respiratory muscles
- Decreased vital capacity
- Alveolar hypoventilation
- Respiratory failure may occur

Intellectual Disability
- Common in myotonic dystrophy
- Severity worse with younger age of onset
- Childhood disease → severe cognitive impairment
Deletion Syndromes

Jason Ryan, MD, MPH

Deletion Syndromes

• Partial deletion of chromosome
 • Long or short arm
 • Portion of long/short arm

Deletion Syndromes

• Usually an error in crossover in meiosis
 • Unbalanced exchange of genes
 • One chromosome with duplication; other with deletion

Meiosis
Replication/Crossover

Deletion Syndromes

• Most cases sporadic (congenital)
• Key syndromes:
 • Cri-du-chat
 • Williams
 • Thymic aplasia

Cri-du-chat Syndrome

• Deletion of part of short arm (p) of chromosome 5
 • "5- syndrome"

Cri-du-chat Syndrome

• Severe intellectual disability
 • Cognitive, speech, motor delays
 • Infants cry like a cat
 • Classically described as "mewing": high-pitched cry
 • Occurs soon after birth then resolves
Cri-du-chat Syndrome

- Microcephaly (small head)
- Characteristic facial features
 - Widely set eyes (hypertelorism)
 - Low-set ears
 - Small jaw
 - Rounded face

- Congenital heart defects
 - Ventricular septal defect (VSD)
 - Patent ductus arteriosus (PDA)
 - Tetralogy of Fallot (TOF)
 - Others

Williams Syndrome

Williams-Beuren syndrome

- Partial deletion on long arm of chromosome 7
- Deleted portion includes gene for elastin
 - Elastic protein in connective tissue
 - Results in elastin "haploinsufficiency"

- Classically an "elfin" facial appearance
 - Small nose
 - Small chin
 - Wide mouth
 - Long philtrum (upper lip length)

- Intellectual disability
 - Delayed developmental milestones
 - Well-developed verbal skills
 - Extremely friendly with strangers
 - Unafraid of strangers
 - Great interest in talking with adults

- Vascular Manifestations
 - Supravalvular aortic stenosis
 - Constriction of ascending aorta above aortic valve
 - High prevalence among children with WS
 - Pulmonary artery stenosis
 - Renal arterystenosis
Thymic Aplasia
DiGeorge Syndrome

- Many different names
 - 22q11 deletion syndrome
 - Velocardiofacial syndrome
 - Shprintzen syndrome
 - Conotruncal anomaly face syndrome
- Partial deletion of long arm (q) chromosome 22
- Immune deficiency
- Hypocalcemia
- Congenital heart defects

Williams Syndrome
Hypercalcemia

- Higher calcium than general pediatric population
 - Evidence of ↑ vitamin D levels and ↑ vitamin D sensitivity
- Usually mild to moderate
- Does not usually cause symptoms
- May lead to constipation
Klinefelter and Turner Syndromes

Klinefelter and Turner

- Sex chromosome aneuploidy disorders
- **Klinefelter**: Male with extra X (XXX)
- **Turner**: Female with missing X (X0)

Karyotype

- Diagnosis of both syndromes
- Often multiple cells to look for mosaicism

Klinefelter Syndrome

- **Male with primary hypogonadism**
 - Small, firm testes
 - Atrophy of seminiferous tubules
 - **Low testosterone**
 - Ratio of estrogens/testosterone determines severity

Klinefelter Syndrome

- Increased gonadotropins
 - Loss of inhibin B → ↑ FSH
 - ↓ testosterone → ↑ LH

Klinefelter Syndrome

- Usually 47 XXY (~80% of cases)
 - Usually meiotic nondisjunction of either parent
- Rarely 48,XXXY (more severe)
- Or 46,XY/47,XXY mosaicism (less severe)
 - Nondisjunction during mitosis after conception
Klinefelter Syndrome
Low Testosterone Features
• Delayed puberty
• Reduced facial/body hair
• Female pubic hair pattern
• Gynecomastia
• Infertility/reduced sperm count

Klinefelter Syndrome
Genital Abnormalities
• Cryptorchidism (undescended testes)
• Hypospadias
• Micropenis

Klinefelter Syndrome
Physical Appearance
• Long legs and arms
 • Extra copy of SHOX gene (X-chromosome)
 • Important for long bone growth
 • “Eunuchoid body shape”

Klinefelter Syndrome
Cognitive Findings
• Learning disabilities
 • Delayed speech/language development
• Quiet personality
 • Quiet, unassertive

Barr Body
• Inactivated X chromosome
 • Normally found in cells of females (XX)
 • One X chromosome undergoes “Lyonization”
 • Condensed into heterochromatin with methylated DNA
 • Seen in cells of patients with Klinefelter’s
 • Not normally seen in males

Turner Syndrome
• Often 45, X0 (45% cases)
 • Most cases caused by sperm lacking X chromosome
• Mosaic Turner syndrome (often milder)
 • 45,X/46,XX
 • Mitotic nondisjunction during post-zygotic cell division
Turner Syndrome

General Features
- Female with short stature
- Loss of one copy of SHOX gene on X-chromosome
- Growth hormone treatment: given in childhood
- Broad chest (shield chest)
- Widely spaced nipples

Turner Syndrome

Ovarian Function
- Hallmark: female with primary hypogonadism
 - Loss of ovarian function
 - “Gonadal dysgenesis”
 - May have “streak ovaries”
 - Streaks of fibrous tissue seen in expected location of ovaries
 - No or very few follicles

Turner Syndrome

Ovarian Function
- Decreased inhibin B
- Decreased estrogens
- Increased LH/FSH
- Levels can vary during childhood
 - Sometimes within normal range
 - Often abnormal in early childhood (<5) and pre-puberty (>10)

Cystic Hygroma
- Congenital lymphatic defect
- Large collection of lymph/cysts
- Often found in head/neck
- Often seen in utero on US

Turner Syndrome

General Features
- Lymphatic obstruction in fetal development
- Webbed neck
- Swollen hands/feet (especially at birth)
Turner Syndrome

Ovarian Function
- Most women **infertile**
- Some can become pregnant with donated oocytes

Cardiovascular
- ~30% of children born with **bicuspid aortic valve**
- 5-10% of children have **coarctation of the aorta**
- **High blood pressure** may occur in childhood
 - Sometimes due to coarctation of renal disease
 - Often primary

Renal Manifestations
- Kidney malformations affect ~1/3 patients
- Abnormal collecting ducts
- Often a **horseshoe kidney**

Osteoporosis
- High incidence of **osteoporosis**
- Low circulating estrogens
- Estrogen treatments often prescribed

Endocrine
- **Type II Diabetes**
 - Turner syndrome 2x risk of general population
- **Thyroid disease**
 - ~1/3 have a thyroid disorder
 - Usually hypothyroidism from Hashimoto’s thyroiditis